

8. Orders shipping to France or Belgium

Looking at the Orders table, there’s a field called ShipCountry. Write a query that shows the

OrderID, CustomerID, and ShipCountry for the orders where the ShipCountry is either France

or Belgium.

Expected Results

OrderID CustomerID ShipCountry

10248 VINET France

10251 VICTE France

10252 SUPRD Belgium

10265 BLONP France

10274 VINET France

10295 VINET France

10297 BLONP France

10302 SUPRD Belgium

10311 DUMON France

10331 BONAP France

10334 VICTE France

10340 BONAP France

10350 LAMAI France

10358 LAMAI France

10360 BLONP France

10362 BONAP France

10371 LAMAI France

(Some rows were not included; the total should be 96)

Hint

In the where clause, instead of combining the filters with “and”, use “or”.

11. Showing only the Date with a DateTime field

In the output of the query above, showing the Employees in order of BirthDate, we see the

time of the BirthDate field, which we don’t want. Show only the date portion of the BirthDate

field.

Expected Results

FirstName LastName Title DateOnlyBirthDate

Margaret Peacock Sales Representative 1955-09-19

Nancy Davolio Sales Representative 1966-12-08

Andrew Fuller Vice President, Sales 1970-02-19

Steven Buchanan Sales Manager 1973-03-04

Laura Callahan Inside Sales Coordinator 1976-01-09

Robert King Sales Representative 1978-05-29

Michael Suyama Sales Representative 1981-07-02

Janet Leverling Sales Representative 1981-08-30

Anne Dodsworth Sales Representative 1984-01-27

Hint

Use the Convert function to convert the BirthDate column (originally a DateTime column) to a

Date column.

18. Products with associated supplier names

We’d like to show, for each product, the associated Supplier. Show the ProductID,

ProductName, and the CompanyName of the Supplier.

Sort the result by ProductID.

This question will introduce what may be a new concept—the Join clause in SQL. The Join

clause is used to join two or more relational database tables together in a logical way.

Here’s a data model of the relationship between Products and Suppliers.

Expected Results

ProductID ProductName Supplier

1 Chai Exotic Liquids

2 Chang Exotic Liquids

3 Aniseed Syrup Exotic Liquids

4 Chef Anton's Cajun Seasoning New Orleans Cajun Delights

5 Chef Anton's Gumbo Mix New Orleans Cajun Delights

6 Grandma's Boysenberry Spread Grandma Kelly's Homestead

7 Uncle Bob's Organic Dried Pears Grandma Kelly's Homestead

8 Northwoods Cranberry Sauce Grandma Kelly's Homestead

9 Mishi Kobe Niku Tokyo Traders

10 Ikura Tokyo Traders

11 Queso Cabrales Cooperativa de Quesos 'Las Cabras'

12 Queso Manchego La Pastora Cooperativa de Quesos 'Las Cabras'

13 Konbu Mayumi's

14 Tofu Mayumi's

15 Genen Shouyu Mayumi's

16 Pavlova Pavlova, Ltd.

17 Alice Mutton Pavlova, Ltd.

18 Carnarvon Tigers Pavlova, Ltd.

19 Teatime Chocolate Biscuits Specialty Biscuits, Ltd.

20 Sir Rodney's Marmalade Specialty Biscuits, Ltd.

21 Sir Rodney's Scones Specialty Biscuits, Ltd.

(Some rows were not included, the total should be 77)

Hint

Just as a reference, here’s an example of what the syntax for the Join looks like, using different

tables from the Northwind database. It will show all the products, with the associated

CategoryName.

Select

 ProductID

 ,ProductName

 ,CategoryName

From Products

 Join Categories

 on Products.CategoryID = Categories.CategoryID

24. Customer list by region

A salesperson for Northwind is going on a business trip to visit customers, and would like to

see a list of all customers, sorted by region, alphabetically.

However, he wants the customers with no region (null in the Region field) to be at the end,

instead of at the top, where you’d normally find the null values. Within the same region,

companies should be sorted by CustomerID.

Expected Results

CustomerID CompanyName Region

OLDWO Old World Delicatessen AK

BOTTM Bottom-Dollar Markets BC

LAUGB Laughing Bacchus Wine Cellars BC

LETSS Let's Stop N Shop CA

HUNGO Hungry Owl All-Night Grocers Co. Cork

GROSR GROSELLA-Restaurante DF

SAVEA Save-a-lot Markets ID

ISLAT Island Trading Isle of Wight

LILAS LILA-Supermercado Lara

THECR The Cracker Box MT

RATTC Rattlesnake Canyon Grocery NM

LINOD LINO-Delicateses Nueva Esparta

GREAL Great Lakes Food Market OR

HUNGC Hungry Coyote Import Store OR

 (skipping some rows in the

middle, the total rows returned

should be 91)

TORTU Tortuga Restaurante NULL

VAFFE Vaffeljernet NULL

VICTE Victuailles en stock NULL

VINET Vins et alcools Chevalier NULL

WANDK Die Wandernde Kuh NULL

WARTH Wartian Herkku NULL

WILMK Wilman Kala NULL

WOLZA Wolski Zajazd NULL

Hint

You won’t be able to sort directly on the Region field here. You’ll need to sort on the Region

field, and also on a computed field that you create, which will give you a secondary sort for

when Region is null

First, without ordering, create a computed field that has a value which will sort the way you

want. In this case, you can create a field with the Case statement, which allows you do to

if/then logic. You want a field that is 1 when Region is null.

Take a look at the Examples section in the SQL Server documentation for Case

(https://msdn.microsoft.com/en-us/library/ms181765.aspx#examples).

Note that when filtering for null values, you can't use “FieldName = Null”. You must use

“FieldName is null”.

Hint

You should have something like this:

Select

 CustomerID

 ,CompanyName

 ,Region

 ,Case

https://msdn.microsoft.com/en-us/library/ms181765.aspx#examples

 when Region is null then 1

 else 0

 End

From Customers

When the Region contains a null, you will have a 1 in the final column. Now, just add the

fields for the Order By clause, in the right order.

32. High-value customers

We want to send all of our high-value customers a special VIP gift. We're defining high-value

customers as those who've made at least 1 order with a total value (not including the discount)

equal to $10,000 or more. We only want to consider orders made in the year 2016.

Expected Result

CustomerID CompanyName OrderID TotalOrderAmount

QUICK QUICK-Stop 10865 17250.00

SAVEA Save-a-lot Markets 11030 16321.90

HANAR Hanari Carnes 10981 15810.00

KOENE Königlich Essen 10817 11490.70

RATTC Rattlesnake Canyon Grocery 10889 11380.00

HUNGO Hungry Owl All-Night Grocers 10897 10835.24

Hint

First, let's get the necessary fields for all orders made in the year 2016. Don't bother grouping

yet, just work on the Where clause. You'll need the CustomerID, CompanyName from

Customers; OrderID from Orders; and Quantity and unit price from OrderDetails. Order by the

total amount of the order, in descending order.

Hint

You should have something like this:

Select

 Customers.CustomerID

 ,Customers.CompanyName

 ,Orders.OrderID

 ,Amount = Quantity * UnitPrice

From Customers

 join Orders

 on Orders.CustomerID = Customers.CustomerID

 join OrderDetails

 on Orders.OrderID = OrderDetails.OrderID

Where

 OrderDate >= '20160101'

 and OrderDate < '20170101'

This gives you the total amount for each Order Detail item in 2016 orders, at the Order Detail

level. Now, which fields do you need to group on, and which need to be summed?

Hint

Select

 Customers.CustomerID

 ,Customers.CompanyName

 ,Orders.OrderID

 ,TotalOrderAmount = sum(Quantity * UnitPrice)

From Customers

 Join Orders

 on Orders.CustomerID = Customers.CustomerID

 Join OrderDetails

 on Orders.OrderID = OrderDetails.OrderID

Where

 OrderDate >= '20160101'

 and OrderDate < '20170101'

Group By

 Customers.CustomerID

 ,Customers.CompanyName

 ,Orders.OrderID

The fields at the Customer and Order level need to be grouped by, and the TotalOrderAmount

needs to be summed.

How would you filter on the sum, in order to get orders of $10,000 or more? Can you put it

straight into the where clause?

48. Customer grouping

Andrew Fuller, the VP of sales at Northwind, would like to do a sales campaign for existing

customers. He'd like to categorize customers into groups, based on how much they ordered in

2016. Then, depending on which group the customer is in, he will target the customer with

different sales materials.

The customer grouping categories are 0 to 1,000, 1,000 to 5,000, 5,000 to 10,000, and over

10,000. So, if the total dollar amount of the customer’s purchases in that year were between 0

to 1,000, they would be in the “Low” group. A customer with purchase from 1,000 to 5,000

would be in the “Medium” group, and so on.

A good starting point for this query is the answer from the problem “High-value customers—

total orders”. Also, we only want to show customers who have ordered in 2016.

Order the results by CustomerID.

Expected Result

CustomerID Company Name Total Order

Amount

Customer

Group

ALFKI Alfreds Futterkiste 2302.20 Medium

ANATR Ana Trujillo Emparedados y

helados

514.40 Low

ANTON Antonio Moreno Taquería 660.00 Low

AROUT Around the Horn 5838.50 High

BERGS Berglunds snabbköp 8110.55 High

BLAUS Blauer See Delikatessen 2160.00 Medium

BLONP Blondesddsl père et fils 730.00 Low

BOLID Bólido Comidas preparadas 280.00 Low

BONAP Bon app' 7185.90 High

BOTTM Bottom-Dollar Markets 12227.40 Very High

BSBEV B's Beverages 2431.00 Medium

CACTU Cactus Comidas para llevar 1576.80 Medium

CHOPS Chop-suey Chinese 4429.40 Medium

COMMI Comércio Mineiro 513.75 Low

CONSH Consolidated Holdings 931.50 Low

DRACD Drachenblut Delikatessen 2809.61 Medium

DUMON Du monde entier 860.10 Low

EASTC Eastern Connection 9569.31 High

ERNSH Ernst Handel 42598.90 Very High

FOLKO Folk och fä HB 15973.85 Very High

FRANK Frankenversand 5587.00 High

(Some rows were not included, the total should be 81)

Hint

This is the SQL from the problem “High-value customers—total orders”, but without the filter

for order totals over 10,000.

Select

 Customers.CustomerID

 ,Customers.CompanyName

 ,TotalOrderAmount = SUM(Quantity * UnitPrice)

From Customers

 Join Orders

 on Orders.CustomerID = Customers.CustomerID

 Join OrderDetails

 on Orders.OrderID = OrderDetails.OrderID

Where

 OrderDate >= '20160101'

 and OrderDate < '20170101'

Group By

 Customers.CustomerID

 ,Customers.CompanyName

Order By TotalOrderAmount Desc

Hint

You can use the above SQL in a CTE (common table expression), and then build on it, using a

Case statement on the TotalOrderAmount.

ANSWERS

8. Orders shipping to France or Belgium

Select

 OrderID

 ,CustomerID

 ,ShipCountry

From Orders

where

 ShipCountry = 'France'

 or ShipCountry = 'Belgium'

Discussion

This is a very simple example, but in many situations you will have multiple where clauses,

with combined “Or” and “And” sections.

In this situation, an alternative would have been to use the “In” operator. We’ll do that in a

future problem.

11. Showing only the Date with a DateTime field

Select

 FirstName

 ,LastName

 ,Title

 ,DateOnlyBirthDate = convert(date, BirthDate)

From Employees

Order By Birthdate

Discussion

What we’re using here is called a computed column, also sometimes called a calculated

column. Anytime you’re doing something besides just returning the column, as it is stored in

the database, you’re using a computed column. In this case, we’re applying a function to

convert the datatype returned.

Note that we’ve added a name, DateOnlyBirthDate, for our computed column. This is called an

“alias”.

DateOnlyBirthDate = convert(date, BirthDate)

If you don’t actually specify the column alias, you get an empty column header, which is not

unhelpful.

18. Products with associated supplier names

Select

 ProductID

 ,ProductName

 ,Supplier = CompanyName

From Products

 Join Suppliers

 on Products.SupplierID = Suppliers.SupplierID

Discussion

Joins can range from the very simple, which we have here, to the very complex. You need to

understand them thoroughly, as they’re critical in writing anything but the simplest SQL.

One thing you’ll see when reading SQL code is, instead of something like the answer above,

something like this:

Select

 ProductID

 ,ProductName

 ,Supplier = CompanyName

From Products P -- Aliased table

 Join Suppliers S -- Aliased table

 on P.SupplierID = S.SupplierID

Notice that the Products table and Suppliers table is aliased, or renamed, with one letter

aliases—P and S. If this is done, the P and S need to be used in the On clause as well.

I’m not a fan of this type of aliasing, although it’s common. The only benefit is avoiding some

typing, which is trivial. But the downside is that the code is harder to read and understand.

It’s not so much a problem in small chunks of SQL like this one. However, in long, convoluted

SQL, you’ll find yourself wondering what the one-letter aliases mean, always needing to refer

back to the From clause, and translate in your head.

The only time I use tables aliases is if the table name is extremely long. And then, I use table

alias names that are understandable, just shortened.

24. Customer list by region

Select

 CustomerID

 ,CompanyName

 ,Region

From Customers

Order By

 Case

 when Region is null then 1

 else 0

 End

 ,Region

 ,CustomerID

Discussion

Once we have the Case expression set up correctly, you just need to create an Order By clause

for it, and add the additional fields for sorting (Region and CustomerID).

If we had wanted to include the sorting field in the output , you could write this:

Select

 CustomerID

 ,CompanyName

 ,Region

 ,RegionOrder=

 Case

 when Region is null then 1

 else 0

 End

From Customers

Order By

 RegionOrder

 ,Region

 ,CustomerID

You would not need to repeat the case statement in the Order By, you can just refer to the alias

- RegionOrder.

Advanced Problems

32. High-value customers

Select

 Customers.CustomerID

 ,Customers.CompanyName

 ,Orders.OrderID

 ,TotalOrderAmount = SUM(Quantity * UnitPrice)

From Customers

 Join Orders

 on Orders.CustomerID = Customers.CustomerID

 Join OrderDetails

 on Orders.OrderID = OrderDetails.OrderID

Where

 OrderDate >= '20160101'

 and OrderDate < '20170101'

Group by

 Customers.CustomerID

 ,Customers.CompanyName

 ,Orders.Orderid

Having Sum(Quantity * UnitPrice) > 10000

Order by TotalOrderAmount DESC

Discussion

If you tried putting this filter

and sum(Quantity * UnitPrice) >= 10000

… in the where clause, you got an error. Aggregate functions can only be used to filter (with

some exceptions) in the Having clause, not the Where clause.

48. Customer grouping

;with Orders2016 as (

 Select

 Customers.CustomerID

 ,Customers.CompanyName

 ,TotalOrderAmount = SUM(Quantity * UnitPrice)

 From Customers

 Join Orders

 on Orders.CustomerID = Customers.CustomerID

 Join OrderDetails

 on Orders.OrderID = OrderDetails.OrderID

 Where

 OrderDate >= '20160101'

 and OrderDate < '20170101'

 Group by

 Customers.CustomerID

 ,Customers.CompanyName

)

Select

 CustomerID

 ,CompanyName

 ,TotalOrderAmount

 ,CustomerGroup =

 Case

 when TotalOrderAmount between 0 and 1000 then 'Low'

 when TotalOrderAmount between 1001 and 5000 then 'Medium'

 when TotalOrderAmount between 5001 and 10000 then 'High'

 when TotalOrderAmount > 10000 then 'Very High'

 End

from Orders2016

Order by CustomerID

Discussion

(Note—there's a small bug in the above SQL, which we'll review in the next problem.)

The CTE works well for this problem, but it's not strictly necessary. You could also use SQL

like this:

Select

 Customers.CustomerID

 ,Customers.CompanyName

 ,TotalOrderAmount = SUM(Quantity * UnitPrice)

 ,CustomerGroup =

 Case

 when SUM(Quantity * UnitPrice) between 0 and 1000 then 'Low'

 when SUM(Quantity * UnitPrice) between 1001 and 5000 then 'Medium'

 when SUM(Quantity * UnitPrice) between 5001 and 10000 then 'High'

 when SUM(Quantity * UnitPrice) > 10000 then 'Very High'

 End

From Customers

 Join Orders

 on Orders.CustomerID = Customers.CustomerID

 Join OrderDetails

 on Orders.OrderID = OrderDetails.OrderID

Where

 OrderDate >= '20160101'

 and OrderDate < '20170101'

Group By

 Customers.CustomerID

 ,Customers.CompanyName

This gives the same result, but notice that the calculation for getting the TotalOrderAmount

was repeated 5 times, including the 4 times in the Case statement.

It's best to avoid repeating calculations like this. The calculations will usually be quite complex

and difficult to read, and you want to have them only in one place. In something simple, like

Quantity * UnitPrice, it's not necessarily a problem. But most of the time, you should avoid

repeating any calculations and code. An easy way to remember this is with the acronym DRY,

which stands for “Don’t Repeat Yourself”. Here’s an article on the topic:

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

